
Khaleesi Documentation
Release 0.1

contributors

February 04, 2016

Contents

i

ii

Khaleesi Documentation, Release 0.1

Contents:

Contents 1

Khaleesi Documentation, Release 0.1

2 Contents

CHAPTER 1

Using Khaleesi

Khaleesi is an ansible based deployment tool Red Hat Openstack CI is using for automation. In order to work, khaleesi
need a configuration file which is provided by khaleesi-settings project. Khaleesi-settings provide the config file using
ksgen tool, located in khaleesi project.

https://github.com/redhat-openstack/khaleesi-settings or http://<redhat-internal-git-server>/git/khaleesi-
settings.git

1.1 Prerequisites

Fedora21+ with Python 2.7. For running jobs, khaleesi requires a dedicated RHEL7 or F21 Jenkins slave. We do have
an ansible playbook that sets up a slave, see Creating a Jenkins slave.

Warning: Do not use the root user, as these instructions assumes that you are a normal user and uses venv. Being
root may shadow some of the errors you may make like forgetting to source venv and pip install ansible.

Update your system, install git and reboot:

sudo yum -y update && sudo yum -y install git && sudo reboot

Install the ‘Development Tools’ Package group, python-devel and sshpass packages:

sudo yum group install -y 'Development Tools'
sudo yum -y install python-devel python-virtualenv sshpass

Install the OpenStack clients:

sudo yum install python-novaclient python-neutronclient python-glanceclient -y

1.2 Installation

Create or enter a folder where you want to check out the repos. We assume that both repo and your virtual environment
are in the same directory. Clone the repos:

git clone https://github.com/redhat-openstack/khaleesi.git
or
git clone https://github.com/redhat-openstack/khaleesi-settings.git

read-only mirror:

3

https://github.com/redhat-openstack/khaleesi-settings
http:/

Khaleesi Documentation, Release 0.1

git clone http://<redhat-internal-git-server>/git/khaleesi-settings.git

Gerrit:

https://review.gerrithub.io/#/q/project:redhat-openstack/khaleesi

Create the virtual envionment, install ansible, ksgen and kcli utils:

virtualenv venv
source venv/bin/activate
pip install ansible==1.9.2
cd khaleesi
cd tools/ksgen
python setup.py develop
cd ../kcli
python setup.py develop
cd ../..

Create the appropriate ansible.cfg for khaleesi:

cp ansible.cfg.example ansible.cfg

If you don’t have a key you need to create it and upload it to your remote host or your tenant in blue if you are using
the Openstack provisoner.

Copy your private key file that you will use to access instances to khaleesi/. We’re going to use the common
example.key.pem key.:

cp ../khaleesi-settings/settings/provisioner/openstack/site/qeos/tenant/keys/example.key.pem <dir>/khaleesi/
chmod 600 example.key.pem

1.3 Overview

By using Khaleesi you will need to choose which installer you want to use, on which provisioner.The provisioners
corresponding to the remote machines which will host your environment. Khaleesi provide two installers: rdo-manager
and packstack, and four provisioners: beaker, centosci, openstack and manual. For all of those, the settings are
provided by khaleesi-settings through ksgen tool. You will find configuration variable under the folder “settings”:

settings:

|-- provisioner
| |-- beaker
| |-- libvirt
| |-- openstack
| `-- rackspace
|-- installer
| |-- foreman
| |-- opm
| |-- packstack
| |-- rdo_manager
| `-- staypuft
|-- tester
| |-- integration
| |-- pep8
| |-- rally
| |-- rhosqe
| |-- tempest

4 Chapter 1. Using Khaleesi

Khaleesi Documentation, Release 0.1

| `-- unittest
|-- product
| |-- rdo
| `-- rhos
|-- distro

The whole idea of the configuration repo is to break everything into small units. Let’s use the installer folder as an
example to describe how the configuration tree is built. When using ksgen with the following flags:

--installer=packstack \
--installer-topology=multi-node \
--installer-network=neutron \
--installer-network-variant=ml2-vxlan \
--installer-messaging=rabbitmq \

When the given –installer=packstack, ksgen is going to the folder called “installer” in khaleesi-settings and looking
for a “packstack.yml” file.

after that, it goes down the tree to the folder “packstack/topology/multi-node.yml” (because of the flag –installer-
topology=multi-node), “packstack/network/neutron.yml”, etc (according to the additional flags) and list all yml files it
finds under those folders.

Then ksgen starts merging all YAML files using the parent folders as a base, that means, that packstack.yml (which
holds configuration that is common to packstack) will be used as base and be merged with “packstack/topology/multi-
node.yml” and “packstack/network/neutron.yml” and so on.

1.4 Usage

After you have everything set up, let’s see how you can create machines using rdo-manager or packstack installer. In
both cases we’re going to use ksgen (Khaleesi Settings Generator) for supplying Khaleesi’s ansible playbooks with a
correct configuration.

1.5 Installing rdo-manager with the manual provisioner

Here, we will deploy a RDO-Manager environment using the manual environment.

First, we create the appropriate configuration file with ksgen. Make sure that you are in your virtual environment that
you previously created.

source venv/bin/activate

Export the ip or fqdn hostname of the test box you will use as the virtual host for osp-director:

export TEST_MACHINE=<ip address of baremetal virt host>

Generate the configuration with the following command:

ksgen --config-dir=../khaleesi-settings/settings generate \
--provisioner=manual \
--product=rdo \
--product-version=liberty \
--product-version-build=last_known_good \
--product-version-repo=delorean_mgt \
--distro=centos-7.0 \
--installer=rdo_manager \

1.4. Usage 5

https://github.com/redhat-openstack/khaleesi/tree/master/tools/ksgen
http://docs.ansible.com/playbooks_intro.html

Khaleesi Documentation, Release 0.1

--installer-env=virthost \
--installer-images=build \
--installer-network=neutron \
--installer-network-isolation=none \
--installer-network-variant=ml2-vxlan \
--installer-topology=minimal \
--installer-deploy=templates \
--installer-post_action=none \
--installer-tempest=disabled \
--workarounds=enabled \
--extra-vars @../khaleesi-settings/hardware_environments/virt_default/hw_settings.yml \
ksgen_settings.yml

Note: The “base_dir” key is defined by either where you execute ksgen from or by the $WORKSPACE environment
variable. The base_dir value should point to the directory where khaleesi and khaleesi-settings have been cloned.

The result is a YAML file collated from all the small YAML snippets from khaleesi-settings/settings.
All the options are quite self-explanatory and changing them is simple as well. The rule file is currently only used for
deciding the installer+product+topology configuration. Check out ksgen for detailed documentation.

The next step will run your intended deployment:

ansible-playbook -vv --extra-vars @ksgen_settings.yml -i local_hosts playbooks/full-job-no-test.yml

If any part fails, you can ask for help on freenode #rdo channel. Don’t forget to save the relevant error lines on
something like pastebin.

1.5.1 Using your new undercloud / overcloud

When your run is complete (or even while it’s running), you can log in to your test machine:

ssh root@<test_machine>
su stack

If you want to log to your new undercloud machine

ssh -F ssh.config.ansible undercloud

Here you could play with your newly created Overcloud

1.6 Installing rdo-manager with centosci provisioner

Here the installation is quite similar with Beaker provisioner. Just notice the changes into the configuration for ksgen:

ksgen --config-dir=../khaleesi-settings/settings generate \
--provisioner=centosci \
--provisioner-site=default \
--provisioner-distro=centos \
--provisioner-distro-version=7 \
--provisioner-site-user=rdo \
--product=rdo \
--product-version=kilo \
--product-version-build=last_known_good \
--product-version-repo=delorean_mgt \

6 Chapter 1. Using Khaleesi

https://github.com/redhat-openstack/khaleesi/tree/master/tools/ksgen
http://fpaste.org/

Khaleesi Documentation, Release 0.1

--distro=centos-7.0 \
--installer=rdo_manager \
--installer-env=virthost \
--installer-images=build \
--installer-network=neutron \
--installer-network-isolation=none \
--installer-network-variant=ml2-vxlan \
--installer-topology=minimal \
--installer-post_action=none \
--installer-tempest=disabled \
--installer-deploy=templates \
--workarounds=enabled \
--extra-vars @../khaleesi-settings/hardware_environments/virt_default/hw_settings.yml \
ksgen_settings.yml

If any part fails, you can ask for help on the internal #rdo-ci channel. Don’t forget to save the relevant error lines on
something like pastebin.

1.6.1 Using your new undercloud / overcloud

When your run is complete (or even while it’s running), you can log in to your host

ssh root@$HOST
su stack

If you want to log to your new undercloud machine, just make on your host:

ssh -F ssh.config.ansible undercloud

Here you could play with your newly created Overcloud

1.7 Installing Openstack on Bare Metal via Packstack

All the steps are the same as the All-in-one case. The only difference is running the ksgen with differents paramters:
Please change the below settings to match your environment:

ksgen --config-dir=/khaleesi_project/khaleesi-settings/settings generate \
--provisioner=foreman \
--provisioner-topology="all-in-one" \
--distro=rhel-7.1 \
--product=rhos \
--product-version=7.0 \
--product-version-repo=puddle \
--product-version-build=latest \
--extra-vars=provisioner.nodes.controller.hostname=puma06.scl.lab.tlv.redhat.com \
--extra-vars=provisioner.nodes.controller.network.interfaces.external.label=enp4s0f1 \
--extra-vars=provisioner.nodes.controller.network.interfaces.external.config_params.device=enp4s0f1 \
--extra-vars=provisioner.nodes.controller.network.interfaces.data.label="" \
--extra-vars=provisioner.nodes.controller.network.interfaces.data.config_params.device="" \
--extra-vars=provisioner.network.network_list.external.allocation_start=10.35.175.1 \
--extra-vars=provisioner.network.network_list.external.allocation_end=10.35.175.100 \
--extra-vars=provisioner.network.network_list.external.subnet_gateway=10.35.175.101 \
--extra-vars=provisioner.network.network_list.external.subnet_cidr=10.35.175.0/24 \
--extra-vars=provisioner.network.vlan.external.tag=190 \
--extra-vars=provisioner.remote_password=mypassword \

1.7. Installing Openstack on Bare Metal via Packstack 7

http://fpaste.org/

Khaleesi Documentation, Release 0.1

--extra-vars=provisioner.nodes.controller.rebuild=yes \
--extra-vars=provisioner.key_file=/home/itbrown/.ssh/id_rsa \
--installer=packstack \
--installer-network=neutron \
--installer-network-variant=ml2-vxlan \
--installer-messaging=rabbitmq \
ksgen_settings.yml

And then simply run:

ansible-playbook -vv --extra-vars @ksgen_settings.yml -i local_hosts playbooks/full-job-no-test.yml

1.8 Cleanup

After you finished your work, you can simply remove the created instances by:

ansible-playbook -vv --extra-vars @ksgen_settings.yml -i hosts playbooks/cleanup.yml

8 Chapter 1. Using Khaleesi

CHAPTER 2

Community Guidelines:

2.1 Blueprints:

What is a blueprint?

1. Any new feature requires a blueprint[1].

2. A new feature is anything that changes API / structure of current code and requires a change that spans for more
than one file.

[1] - https://wiki.openstack.org/wiki/Blueprints#Blueprints_reference

Where should one submit blueprints?

1. Any new blueprint requires a discussion in the ML / weekly sync. (we encourage everyone who is involved with
the project to join)

2. A code sample / review of a blueprint should use the git-review -D for publishing a draft on gerrit.

3. Since the review process is being done as a draft, it is possible to submit the draft prior to an actual ML e-mail.

2.2 Reviews:

1. https://review.gerrithub.io/Documentation/config-labels.html#label_Code-Review

2. A “-1”/”-2” from a core requires special attention and a patch should not be merged prior to having the same
core remove the “-1”/”-2”.

3. In case of a disagreement between two cores, the matter will be brought into discussion on the weekly sync /
ML where each core will present his / her thoughts.

4. Self reviews are not allowed. You are required to have at least one more person +1 your code.

5. No review should be merged prior to all gates pass.

6. Bit Rot. To keep the review queue clean an auto-abandoning of dead or old reviews is implemented. A dead
review is defined by there are no comments, votes, activity for some agreed upon length of time. Warning will
be posted on the review for two weeks of no activity, after the third week the review will be abandoned.

2.3 Gates:

1. If a gate has failed, we should first fix that gate and rerun the job to get it passing.

9

https://wiki.openstack.org/wiki/Blueprints#Blueprints_reference
https://review.gerrithub.io/Documentation/config-labels.html#label_Code-Review

Khaleesi Documentation, Release 0.1

2. When a gate fails due to an infrastructure problem (example: server timeout, failed cleanup, etc), two cores
approval is required in order to remove a gate “-1” vote

2.4 Commits:

1. Each commit should be dedicated to a specific subject and not include several patches that are not related.

2. Each commit should have a detailed commit message that describes the “high level” of what this commit does
and have reference to other commits in case there is a relationship.

2.5 Cores:

1. Need to have quality reviews.

2. Reviews are well formed, descriptive and constructive.

3. Reviews are well thought and do not result in a followed revert. (often)

4. Should be involved in the project on a daily basis.

10 Chapter 2. Community Guidelines:

CHAPTER 3

Contributing to Khaleesi development

3.1 Getting Started with Khaleesi.

see Prerequisites

3.2 Associated Settings Repository

https://github.com/redhat-openstack/khaleesi-settings

3.3 Help, I can’t run this thing

Look under the khaleesi/tools/wrappers directory

3.4 Code Review (IMPORTANT)

Pull requests will not be looked at on khaleesi github. Code submissions should be done via gerrithub
(https://review.gerrithub.io). Please sign up with https://www.gerrithub.io and your github credentials to make sub-
missions. Additional permissions on the project will need to be done on a per-user basis.

When you set up your account on gerrithub.io, it is not necessary to import your existing khaleesi fork.:

yum install git-review

To set up your repo for gerrit:

Add a new remote to your working tree:

git remote add gerrit ssh://username@review.gerrithub.io:29418/redhat-openstack/khaleesi

Replace username with your gerrithub username.

Now run:

git review -s
scp -p -P 29418 username@review.gerrithub.io:hooks/commit-msg `git rev-parse --git-dir`/hooks/commit-msg

Again, replace username with your gerrithub username.

11

https://github.com/redhat-openstack/khaleesi-settings
https://review.gerrithub.io
https://www.gerrithub.io

Khaleesi Documentation, Release 0.1

3.5 Required Ansible version

Ansible 1.8.2 is now required.

3.6 Std{out,err} callback plugin

To use the callback plugin that will log all stdout, stderr, and other data about most tasks, you must
set the ANSIBLE_CALLBACK_PLUGINS envvar. You can also set the KHALEESI_LOG_PATH envvar.
KHALEESI_LOG_PATH defaults to /tmp/stdstream_logs.:

export ANSIBLE_CALLBACK_PLUGINS=$WORKSPACE/khaleesi/plugins/callbacks export
KHALEESI_LOG_PATH=$WORKSPACE/ansible_log

3.7 Khaleesi use cases

Check khaleesi Usage

12 Chapter 3. Contributing to Khaleesi development

CHAPTER 4

ksgen - Khaleesi Settings Generator

4.1 Setup

It’s advised to use ksgen in a virtual Python environment.

$ virtualenv ansible # you skip this and use an existing one
$ source ansible/bin/activate
$ python setup.py develop # do this in the ksgen directory

4.2 Running ksgen

Assumes that ksgen is installed, else follow Setup.

You can get general usage information with the --help option. After you built a proper settings directory (“config-
uration tree”) structure, you need to let ksgen know where it is. Invoke ksgen like this to show you all your possible
options:

ksgen --config-dir <dir> help

If --config-dir is not provided, ksgen will look for the KHALEESI_DIR environment variable, so it is a good
practice to define this in your .bashrc file:

export KHALEESI_DIR=<dir>
ksgen help

This displays options you can pass to ksgen to generate the all-in-one settings file.

4.3 Using ksgen

4.3.1 How ksgen works

ksgen is a simple utility to merge dictionaries (hashes, mappings), and lists (sequences, arrays). Any scalar value
(string, int, floats) are overwritten while merging.

For e.g.: merging first_file.yml and second_file.yml

first_file.yml:

13

Khaleesi Documentation, Release 0.1

foo:
bar: baz
merge_scalar: a string from first dict
merge_list: [1, 3, 5]
nested:
bar: baz
merge_scalar: a string from first dict
merge_list: [1, 3, 5]

and second_file:

foo:
too: moo
merge_scalar: a string from second dict
merge_list: [6, 2, 4, 3]
nested:
bar: baz
merge_scalar: a string from second dict
merge_list: [6, 2, 4, 3]

produces the output below:

foo:
bar: baz
too: moo
merge_scalar: a string from second dict
merge_list: [1, 3, 5, 6, 2, 4, 3]
nested:
bar: baz
merge_scalar: a string from second dict
merge_list: [1, 3, 5, 6, 2, 4, 3]

4.3.2 Organizing settings files

ksgen requires a --config-dir option which points to the directory where the settings files are stored. ksgen
traverses the config-dir to generate a list of options that sub-commands (help, generate) can accept.

First level directories inside the config-dir are used as options, and yml files inside them are used as option values.
You can add suboptions if you add a directory with the same name as the value (without the extension). Inside that
directory, the pattern repeats: you can specify options by creating directories, and inside them yml files.

If the directory name and a yml file don’t match, it doesn’t add a suboption (it gets ignored). You can use this to store
YAMLs for includes.

Look at the following schematic example:

settings/
-- option1/
| -- ignored/
| | -- useful.yml
| -- value1.yml
| -- value2.yml
-- option2/

-- value3/
| -- suboption1/
| -- value5.yml
| -- value6.yml

14 Chapter 4. ksgen - Khaleesi Settings Generator

Khaleesi Documentation, Release 0.1

-- value3.yml
-- value4.yml

The valid settings will be:

$ ksgen --config-dir settings/ help
[snip]
Valid configs are:

--option1=<val> [value2, value1]
--option2=<val> [value4, value3]
--option2-suboption1=<val> [value6, value5]

A more organic settings example:

settings/
-- installer/
| -- foreman/
| | -- network/
| | -- neutron.yml
| | -- nova.yml
| -- foreman.yml
| -- packstack/
| | -- network/
| | -- neutron.yml
| | -- nova.yml
| -- packstack.yml
-- provisioner/

-- trystack/
| -- tenant/
| | -- common/
| | | -- images.yml
| | -- john-doe.yml
| | -- john.yml
| | -- smith.yml
| -- user/
| -- john.yml
| -- smith.yml
-- trystack.yml

ksgen maps all directories to options and files in those directories to values that the option can accept. Given the above
directory structure, the options that generate can accept are as follows

Options Values
provisioner trystack
provisioner-tenant smith, john, john-doe
provisioner-user john, smith
installer packstack, foreman
installer-network nova, neutron

Note: ksgen skips provisioner/trystack/tenant/common directory since there is no common.yml file under the
tenant directory.

4.3.3 Default settings

Default settings allow the user to supply only the minimal required flags in order to generate a valid output file. Defaults
settings will be loaded from the given ‘top-level’ parameters settings files if they are defined in them. Defaults settings

4.3. Using ksgen 15

Khaleesi Documentation, Release 0.1

for any ‘non top level’ parameters that have been given will not been loaded.

Example of defaults section in settings files:: provisioner/openstack.yml: defaults:

site: openstack-site topology: all-in-one

provisioner/openstack/site/openstack-site.yml: defaults:

user: openstack-user

Usage example:: ksgen –config-dir=/settings/dir/path generate –provisioner=openstack settings.yml

4.3.4 generate: merges settings into a single file

The generate command merges multiple settings file into a single file. This file can then be passed to an ansible
playbook. ksgen also allows merging, extending, overwriting (!overwrite_) and looking up (!lookup_) settings that
ansible (at present) doesn’t allow.

Merge order

Refering back to the settings example above, if you execute the command:

ksgen --config-dir sample generate \
--provisioner trystack \
--installer packstack \
--provisioner-user john \
--extra-vars foo.bar=baz \
--provisioner-tenant smith \
output-file.yml

generate command will create an output-file.yml that include all contents of

SL File Reason
1 provisioner/trystack.yml The first command line option
2 merge provisioner/trystack/user/john.yml The first child of the first command line option
3 merge provisioner/trystack/tenant/smith.yml The next child of the first command line option
4 merge installer/packstack.yml the next top-level option
5 add/merge foo.bar: baz. to output extra-vars get processed at the end

Rules file

ksgen arguments can get quite long and tedious to maintain, the options passed to ksgen can be stored in a rules yaml
file to simplify invocation. The command above can be simplified by storing the options in a yaml file.

rules_file.yml:

args:
provisioner: trystack
provisioner-user: john
provisioner-tenant: smith
installer: packstack
extra-vars:
- foo.bar=baz

ksgen generate using rules_file.yml:

16 Chapter 4. ksgen - Khaleesi Settings Generator

Khaleesi Documentation, Release 0.1

ksgen --config-dir sample generate \
--rules-file rules_file.yml \
output-file.yml

Apart from the args key in the rules-files to supply default args to generate, validations can also be added by adding a
‘validation.must_have’ like below:

args:
...
default args

...
validation:

must_have:
- topology

The generate commmand would validate that all options in must_have are supplied else it will fail with an appropriate
message.

4.4 YAML tags

ksgen uses Configure python package to keep the yaml files DRY. It also adds a few yaml tags like !overwrite, !lookup,
!join, !env to the collection.

4.4.1 overwrite

Use overwrite tag to overwrite value of a key. This is especially useful when to clear the contents of an array and add
new one

For e.g.: merging

foo: bar

and

foo: [1, 2, 3]

will fail since there is no reasonable way to merge a string and an array. Use overwrite to set the contents of foo to [1,
2, 3] as below

foo: !overwrite [1, 2, 3]

4.4.2 lookup

Lookup helps keep the yaml files DRY by replacing looking up values for keys.

foo: bar
key_foo: !lookup foo

After ksgen process the yaml above the value of key_foo will be replaced by bar resulting in the output below.

foo: bar
key_foo: bar

This works for several consecutive !lookup as well such as

4.4. YAML tags 17

http://configure.readthedocs.org/en/latest/
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/Don't_repeat_yourself

Khaleesi Documentation, Release 0.1

foo:
barfoo: foobar

bar:
foo: barfoo

key_foo: !lookup foo[!lookup bar.foo]

After ksgen process the yaml above the value of key_foo will be replaced by foobar

Warning: (Limitation) Lookup is done only after all yaml files are loaded and the values are merged so that the
entire yaml tree can be searched. This prevents combining other yaml tags with lookup as most tags are processed
when yaml is loaded and not when it is written. For example:

home: /home/john
bashrc: !join [!lookup home, /bashrc]

This will fail to set bashrc to /home/john/bashrc where as the snippet below will work as expected:

bashrc: !join [!env HOME, /bashrc]

4.4.3 join

Use join tag to join all items in an array into a string. This is quite useful when using yaml anchors or env tag.

unused:
baseurl: &baseurl http://foobar.com/repo/

repo:
epel7: !join[*baseurl, epel7]

bashrc: !join [!env HOME, /bashrc]

4.4.4 env

Use env tag to lookup value of an environment variable. An optional default value can be passed to the tag. if no
default values are passed and the lookup fails, then a runtime KeyError is generated. Second optional argument will
reduce length of value by given value

user_home: !env HOME
user_shell !env [SHELL, zsh] # default shell is zsh
job_name_parts:

- !env [JOB_NAME, 'dev-job']
- !env [BUILD_NUMBER, None]
- !env [USER, None, 5]

job_name: "{{ job_name_parts | reject(none) | join('-') }}"

The snippet above effectively uses env tag and default option to set the job_name variable to $JOB_NAME-
$BUILD_NUMBER-${USER:0:5} if they are defined else to ‘dev-job’.

4.4.5 limit_chars

This function will trim value of variable or string to given length.

18 Chapter 4. ksgen - Khaleesi Settings Generator

Khaleesi Documentation, Release 0.1

debug: message: !limit_chars [‘some really looong text’ 10]

4.5 Debugging errors in settings

ksgen is heavily logged and by default the log-level is set to warning. Changing the debug level using the
--log-level option to info or debug reveals more information about the inner workings of the tool and how
values are loaded from files and merged.

4.6 Developing ksgen

4.6.1 Running ksgen unit-tests

pip install pytest
py.test tests/test_<filename>.py
or
python tests/test_<filename>.py <method_name>

4.5. Debugging errors in settings 19

Khaleesi Documentation, Release 0.1

20 Chapter 4. ksgen - Khaleesi Settings Generator

CHAPTER 5

kcli - Khaleesi CLI tool

kcli is intended to reduce Khaleesi users’ dependency on external CLI tools.

5.1 Setup

Note: Khaleesi is based on ansible so for setup to work, kcli requires ansible installed:

$ pip install ansible

from khaleesi directory.

$ cd tools/kcli
$ python setup.py install # do this in the ``kcli`` directory

5.2 Running kcli

Assumes that kcli is installed, else follow Setup.

You can get general usage information with the --help option:

kcli --help

This displays options you can pass to kcli.

5.3 KCLI execute

Note: This is a wrapper for the ansible-playbook command. In verbose mode, the equivalent anisble command
will be printed.

Executes pre-configured ansible-playbooks, with given settings YAML file generated by ksgen. if no settings file is
defined, will look for the default name ksgen_settings.yml:

kcli [-vvvv] [--settings SETTINGS] execute [-i INVENTORY] [--provision] [--install] [--test] [--collect-logs] [--cleanup]

21

Khaleesi Documentation, Release 0.1

22 Chapter 5. kcli - Khaleesi CLI tool

CHAPTER 6

Handling the Jenkins job definitions

This section deals with the issue of adding, removing and changing of job definitions through the JJB files.

A general documentation about JJB can be found on its website. When in doubt about what an option means in the
job description, search in this manual.

6.1 Location and structure

The job definitions reside in khaleesi-settings/jobs and they are in YAML format. The changes are applied
on the official Jenkins server by submitting a change to the files in this repository, and running the jenkins_job_builder
job.

If you removed some job, please make sure to disable or delete the job that is no longer used. The job has a diff output
at the end of the run that compares the jobs that exist on the server but are not part of the job definitions.

The defaults.yaml file containts the default values that all jobs get by default. It also contains some macros that
can be referenced later. You probably don’t need to modify this file.

At the moment the main.yaml file contains the definitions for all RDO CI jobs. On the top of the file you find a
job-template that is the base of our jobs. You can see that its name contains a lot of variables in curly brackets “{}”,
they are replaced by the actual job definitions, and we give them values by the project definitions lower in the file.

The project definitions are creating a matrix of variables, from which all the possible combinations get created on the
Jenkins server.

6.2 Adding new jobs

The need for a new job could arise when we want to extend our testing. There’s a significant difference between two
cases:

• adding a new value to an existing ksgen option (can be thought of as extending the testing matrix in an existing
dimension)

• adding a new option to ksgen (adding a new dimension to the testing matrix)

The first case is significantly easier to deal with, so let’s discuss that first.

Let’s say you added the new variable foo for the distro setting. If you want to create a whole new set of jobs, then you
might want to create a new project definition. In most cases, it’s enough if you extend an existing definition. In that
case, just add the relevant option to the proper place. Here’s an example:

23

http://ci.openstack.org/jenkins-job-builder/
http://rhos-qe-jenkins.rhev-ci-vms.eng.rdu2.redhat.com/job/jenkins_job_builder/
http://ci.openstack.org/jenkins-job-builder/definition.html#macro

Khaleesi Documentation, Release 0.1

- project:
name: rhos7-jobs
product:

- rhos
product-version:

- 7_director
product-version-repo:

- poodle
- puddle

distro:
- rhel-7.1
- foo

messaging:
- rabbitmq

[the rest of the definition is omitted]

If you want to extend the matrix, the changes are more numerous.

• the job-template has to be changed, and the new option added to the name

• the ksgen-builder macro needs alteration, both in the calling in the job template, and in the shell script part (add
it to the ksgen command).

• add the option to all the project definitions that are using the template (currently all of them), modifying the
template name in them too.

This will also result in a replacement of all the Jenkins jobs that use the template, as the naming changes.

24 Chapter 6. Handling the Jenkins job definitions

CHAPTER 7

Creating a Jenkins server with Khaleesi jobs

7.1 Getting a Jenkins

Deploying the jobs require a properly configured Jenkins server. We have a couple of them already, but if you want to
experiment without any fear of messing with other jobs, the best is to get yourself a server. It’s recommended to use
the Long Term Support (LTS) version.

You can create a VM on any of our OpenStack instances (don’t forget to use your public key for it), attach a floating
IP and then install Jenkins. This should work both on Fedora and RHEL:

sudo wget -O /etc/yum.repos.d/jenkins.repo \
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo
sudo rpm --import \
http://pkg.jenkins-ci.org/redhat-stable/jenkins-ci.org.key
yum install jenkins
service jenkins start
chkconfig jenkins on

7.2 Installing plugins

Our jobs require quite a few plugins. So when your Jenkins is up and running, navigate to
http://$JENKINS_IP:8080/cli and download jenkins-cli.jar.

Afterwards. just execute these commands:

java -jar jenkins-cli.jar -s http://$JENKINS_IP:8080/ install-plugin git \
xunit ansicolor multiple-scms rebuild ws-cleanup gerrit-trigger \
parameterized-trigger envinject email-ext sonar copyartifact timestamper \
build-timeout jobConfigHistory test-stability jenkins-multijob-plugin \
dynamicparameter swarm shiningpanda scm-api ownership mask-passwords \
jobConfigHistory buildresult-trigger test-stability dynamicparameter \
scm-api token-macro swarm scripttrigger groovy-postbuild shiningpanda \
jenkins-multijob-plugin ownership

7.3 Deploying the jobs

You can do this from any machine. Install JJB:

25

http://pkg.jenkins-ci.org/redhat-stable/

Khaleesi Documentation, Release 0.1

pip install jenkins-job-builder

Create a config file for it:

cat > my_jenkins << EOF
[jenkins]
user=my_username
password=my_password
url=http://$JENKINS_IP:8080/
EOF

Optional: I recommend turning off the timed runs (deleting - timed lines from the job template), otherwise they would
run periodically on your test server:

sed '/- timed:/d' khaleesi-settings/jobs/main.yaml

Then just run the job creation (the last argument is the job directory of the khaleesi-settings repo, which I assume you
cloned previously):

jenkins-jobs --conf my_jenkins update khaleesi-settings/jobs/

7.4 Bonus: Test your job changes

If you want to experiment with your own job changes:

• open khaleesi-settings/jobs/defaults.yaml

• change the khaleesi and/or khalessi-settings repo URL to your own and your own branch

• execute the job building step above

Now your test server will use your own version of the repos.

Tip: you can git stash save testing these changes, and later recall them with git stash pop to make
this testing step easy along the code review submission.

7.5 Creating a Jenkins slave

Now you need to either set up the machine itself as a slave, or attach/create a slave to run the jobs. The slave needs to
have the ‘khaleesi’ label on it to run the JJB jobs.

You can set up a slave with the help of the khaleesi-slave repo.

git clone git@github.com:redhat-openstack/khaleesi-settings.git
cd khaleesi-settings/jenkins/slaves
cat << EOF > hosts
$SLAVE_IP

[slave]
$SLAVE_IP
EOF

Check the settings in ansible.cfg.sample. If you run into weird ansible errors about modules you probably don’t have
them set up correctly. This should be enough:

26 Chapter 7. Creating a Jenkins server with Khaleesi jobs

Khaleesi Documentation, Release 0.1

[defaults]
host_key_checking = False
roles_path = ./roles

Execute the playbook, assuming that your instance uses the “fedora” user and you can access it by the “rhos-
jenkins.pem” private key file. If you used a proper cloud image, it will fail.

ansible-playbook -i hosts -u fedora playbooks/basic_internal_slave.yml --private-key=rhos-jenkins.pem -v

Login to the machine, become root and delete the characters from /root/.ssh/authorized_keys before the “ssh-rsa”
word. Log out and rerun the ansible command. It should now finish successfully.

Add the slave to Jenkins. If you used the same machine, specify localhost and add the relevant public key for the
rhos-ci user. use the /home/rhos-ci/jenkins directory, add the khaleesi label, only run tied jobs. You’re
done.

7.6 Jenkins RDO-Manager:

For using khaleesi with Jenkins, first of all see the steps Getting a Jenkins part for setting up a Jenkins slave and for
use jjb.

If you want to setup a manual job on Jenkins you have to follow those steps:

7.6.1 Setup a slave (General):

Check the option:

Restrict where this project can be run

And put the name of your slave.

7.6.2 Clone the repositories (Source Code Management):

Select the choice:

Multiple SCMs

And put the urls of the khaleesi / khaleesi-settings repositories. You need to specify to jenkins to checkout the reposi-
tories in a sub-directory:

Check out to a sub-directory

And specify for each:

khaleesi
khaleesi-settings

7.6.3 Build Environment:

Check the option:

Delete workspace before build starts

7.6. Jenkins RDO-Manager: 27

Khaleesi Documentation, Release 0.1

7.6.4 Build:

Add a step:

Virtualenv Builder

And select:

Python version: System-CPython-2.7
Nature: Shell

And put the above informations into the shell command:

pip install -U ansible==1.9.2 > ansible_build; ansible --version
source khaleesi-settings/jenkins/ansible_rdo_mang_settings.sh

install ksgen
pushd khaleesi/tools/ksgen
python setup.py develop
popd

pushd khaleesi
generate config
ksgen --config-dir=../khaleesi-settings/settings generate \

--provisioner=your_provisioner (see cookbook)

get nodes and run test
set +e
anscmd="stdbuf -oL -eL ansible-playbook -vv --extra-vars @ksgen_settings.yml"

$anscmd -i local_hosts playbooks/full-job-no-test.yml
result=$?

infra_result=0
$anscmd -i hosts playbooks/collect_logs.yml &> collect_logs.txt || infra_result=1
$anscmd -i local_hosts playbooks/cleanup.yml &> cleanup.txt || infra_result=2

if [["$infra_result" != "0" && "$result" = "0"]]; then
if the job/test was ok, but collect_logs/cleanup failed,
print out why the job is going to be marked as failed
result=$infra_result
cat collect_logs.txt
cat cleanup.txt

fi

exit $result

7.6.5 Post-build actions:

Add a post build action for collecting logs and required files for debuging and archived them:

Archive the artifacts: **/collected_files/*.tar.gz, **/nosetests.xml, **/ksgen_settings.yml

If you run tempest during the deployment add the following step for collecting the tests result:

Publish JUnit test result report
Test Report XMLs : **/nosetests.xml
Check : Test stability history

28 Chapter 7. Creating a Jenkins server with Khaleesi jobs

CHAPTER 8

Khaleesi - Cookbook

By following these steps, you will be able to deploy rdo-manager using khaleesi on a CentOS machine with a basic
configuration

8.1 Requirements

For deploying rdo-manager you will need at least a baremetal machine which must has the following minimum system
requirements:

CentOS-7
Virtualization hardware extenstions enabled (nested KVM is not supported)
1 quad core CPU
12 GB free memory
120 GB disk space

Khaleesi driven RDO-Manager deployments only support the following operating systems:

CentOS 7 x86_64
RHEL 7.1 x86_64 (Red Hat internal deployments only)

See the following documentation for system requirements:

http://docs.openstack.org/developer/tripleo-docs/environments/virtual.html

Note: There is an internal khaleesi-settings git repository that contains the settings and configuration for RHEL
deployments. Do not attempt to use a RHEL bare metal host or RHEL options in ksgen using these instructions

8.2 Deploy rdo-manager

8.2.1 Installation:

Get the code :

khaleesi on Github:

git clone git@github.com:redhat-openstack/khaleesi.git

khaleesi-settings on Github:

29

Khaleesi Documentation, Release 0.1

git clone git@github.com:redhat-openstack/khaleesi-settings.git

Install tools and system packages:

sudo yum install -y python-virtualenv gcc

or on Fedora 22:

sudo dnf install -y python-virtualenv gcc

Create the virtual envionment, install ansible, ksgen and kcli utils:

virtualenv venv
source venv/bin/activate
pip install ansible==1.9.2
cd khaleesi/tools/ksgen
python setup.py develop
cd ../kcli
python setup.py develop
cd ../..

Note: If you get a errors with kcli installation make sure you have all system development tools intalled on your local
machine: python2-devel for Fedora CentOS

8.2.2 Configuration:

Create the appropriate ansible.cfg for khaleesi:

cp ansible.cfg.example ansible.cfg
touch ssh.config.ansible
echo "" >> ansible.cfg
echo "[ssh_connection]" >> ansible.cfg
echo "ssh_args = -F ssh.config.ansible" >> ansible.cfg

8.2.3 SSH Keys:

Note: We assume that you will named the key : ~/id_rsa and ~/id_rsa.pub

Ensure that your ~/.ssh/id_rsa.pub file is in /root/.ssh/authorized_keys file on the baremetal virt host:

ssh-copy-id root@<ip address of baremetal virt host>

8.2.4 Deployment Configuration:

Export the ip or fqdn hostname of the test box you will use as the virtual host for osp-director:

export TEST_MACHINE=<ip address of baremetal virt host>

Create a ksgen-settings file for Khaleesi to be able to get options and settings:

30 Chapter 8. Khaleesi - Cookbook

Khaleesi Documentation, Release 0.1

ksgen --config-dir=../khaleesi-settings/settings generate \
--provisioner=manual \
--product=rdo \
--product-version=liberty \
--product-version-build=last_known_good \
--product-version-repo=delorean_mgt \
--distro=centos-7.0 \
--installer=rdo_manager \
--installer-deploy=templates \
--installer-env=virthost \
--installer-images=build \
--installer-network=neutron \
--installer-network-isolation=none \
--installer-network-variant=ml2-vxlan \
--installer-post_action=none \
--installer-topology=minimal \
--installer-tempest=disabled \
--workarounds=enabled \
--extra-vars @../khaleesi-settings/hardware_environments/virt/network_configs/none/hw_settings.yml \
ksgen_settings.yml

Note: The “base_dir” key is defined by either where you execute ksgen from or by the $WORKSPACE environment
variable. The base_dir value should point to the directory where khaleesi and khaleesi-settings have been cloned.

If you want to have more informations about the options used by ksgen launch:

ksgen --config-dir=../khaleesi-settings/settings help

Note: This output will give you all options available in ksgen tools, You can also check into Usage for more examples.

Once all theses steps is done, you have a ksgen-settings file which contains all settings for your deployment. Khaleesi
will load all the variables from this YAML file.

Review the ksgen_settings.yml file

8.2.5 Deployment Execution:

And then simply run:

ansible-playbook -vv --extra-vars @ksgen_settings.yml -i local_hosts playbooks/full-job-no-test.yml

8.3 Cleanup

After you finished your work, you can simply remove the created instances by:

ansible-playbook -vv --extra-vars @ksgen_settings.yml -i hosts playbooks/cleanup.yml

8.3. Cleanup 31

Khaleesi Documentation, Release 0.1

32 Chapter 8. Khaleesi - Cookbook

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

33

